Woohooo! You can check out this protocol here!
One of the best things that has happened for my work recently has been the addition of increased multiplexing in the TMTPro sets. Sure, on the Orbis we can 18-plex, but on the fast instruments we can now 10-plex! I saw some misunderstandings of how this works on the Twitter thing recently, so this is how it works.
Just use every other tag! You’ve got 10! That’s as much as you could multiplex with anything (except Neu-Plex) a couple of years ago!
What we most recently did was buy a 16-plex kit + the two extra tags. Now there are full 18-plex kits available in just the huge 5mg aliquots (enough to label approximately 1.8 million single human cells) that you can aliquot out. We preprinted a super short and fast protocol to aliquot out TMT kits using an inexpensive robot last summer that saved us enough money in one single kit to more than pay for the robot. I bet you can find it. That paper also received a response from a peer reviewer that was so negative that I’m having it framed for my office. Though it might spend some time above my heavy bag for a while. Motivation!
We use the N-tags for the TOFs and we keep the C-tags for when we make TMT spectral libraries or when a collaborator has just a few samples. We may need to shake this up a little because there are a lot of c-tag aliquots around.
Since this is unit resolution, you can use these tags for 10-plex multiplexing on ion traps or triple quads as well. AND the collision energy is so much closer to the peptide bond energy that I can’t imagine ever using the TMT6/10/11-plex reagents ever again.
Having the ability to leverage these reagents for the super cool nPOP method is going to be a major win for us. The way this is configured it looks like we can prep almost 1,500 multiplexed single cells at a time.
What we most recently did was buy a 16-plex kit + the two extra tags. Now there are full 18-plex kits available in just the huge 5mg aliquots (enough to label approximately 1.8 million single human cells) that you can aliquot out. We preprinted a super short and fast protocol to aliquot out TMT kits using an inexpensive robot last summer that saved us enough money in one single kit to more than pay for the robot. I bet you can find it. That paper also received a response from a peer reviewer that was so negative that I’m having it framed for my office. Though it might spend some time above my heavy bag for a while. Motivation!